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The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement
within repeating 2,000-s trials were modeled with a linear transfer function. These experiments em-
ployed improved schedule forms and analytical methods to improve the precision of the measured
transfer function, compared to previous work. The refinements include both the use of multiple
reinforcement periods that improve spectral coverage and averaging of independently determined
transfer functions. A linear analysis was then used to predict behavior observed for three different
test schedules. The fidelity of these predictions was determined.
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Although the extremely rich repertoires of
behavior supported by time-varying schedules
of reinforcement have been noted with inter-
est for decades, quantitative models of behav-
ioral dynamics have been lacking. Palya, Wal-
ter, Kessel, and Lucke (1996), however,
successfully extracted the salient properties
for an individual organism from the behav-
ioral dynamics supported by one schedule in
a manner that allowed prediction of the be-
havioral dynamics supported by a second
schedule. To a large extent, our progress was
made by combining a carefully selected ex-
perimental environment with an appropriate
data analysis method. The schedules used in
our prior report were simple: periodic pulses,
or bursts, of reinforcement availability for re-
sponses following variable periods with a con-
stant average (a variable-interval or VI sched-
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ule), separated by periods during which
responses had no effect (extinction). Further,
we focused on steady-state responding so the
behavioral dynamics themselves were restrict-
ed to a particularly simple form. The predic-
tion method used to generalize from one
schedule to another was built from an as-
sumed linear dependence of the steady-state
behavior upon the supporting reinforcement
schedule. Palya et al.’s results not only dem-
onstrated that some forms of behavioral dy-
namics can be understood but also suggested
approaches that could refine this understand-
ing. Our initial improvements are modifica-
tions to the experimental procedures, rather
than alterations of the underlying linear anal-
ysis. How well, how simply, and how broadly
we can stretch the assumption of linearity are
the core questions that we begin to address
in this report. In the longer term, by answer-
ing these questions, we may further under-
stand behavioral dynamics.

This report begins with a review of the im-
portant stages required when generalizing a
specific measurement of behavioral dynamics
to make broader predictions. As part of this
review, the differences between a linear anal-
ysis of steady-state behavioral dynamics and a
more traditional analysis of static behavior,
such as a matching law analysis, are noted.
Next, we cover the refinements suggested by
Palya et al. (1996) and introduced in this
study. A section describing the experimental
procedure is presented next. We then discuss
the results obtained from both qualitative
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and quantitative perspectives. We close by
summarizing the conclusions we have drawn
from the results, as well as the questions
opened by the results. There is also an ap-
pendix that covers the mathematical basis for
the data reduction, linear analysis predic-
tions, and testing the quality of the predic-
tions.

GENERALIZING OBSERVED
BEHAVIORAL DYNAMICS WITH

A LINEAR ANALYSIS

The experiment and linear analysis of this
report address specific technical questions:
How faithfully can an animal’s steady-state pe-
riodic boundary behavioral dynamics be de-
scribed by a linear filter? Are these dynamics
invariant properties of the individual pigeon?
The selection of steady-state periodic bound-
ary conditions provides the simplest behav-
ioral dynamics problem to address. In steady-
state behavior, one can avoid the more
complex transient case of adaptive behavioral
dynamics in which an animal is picking up
and dropping behaviors. We are asserting
that in the steady state, when acquisition is
complete, the behavioral dynamics should
look fairly linear. We further simplify by re-
stricting the problem to that of an averaged
steady state. Once the anchor point of this
simpler behavioral dynamics has been estab-
lished, one can then begin work on more
complex behavioral models. As a context
note to place our usage of the term, we are
using dynamics to mean time-varying behav-
ior.

Any analysis of behavioral dynamics must
describe moment-by-moment changes in be-
havior over extended periods of time. In fact,
the study of how a system’s state varies mo-
ment by moment over time is, for all intents
and purposes, the definition of dynamics. Be-
yond just describing any specific example of
behavioral dynamics, any model, given one
set of observed behavioral dynamics, should
provide a method that predicts the behavior
that will be observed as the organism’s envi-
ronment changes over some reasonable
range. The allowed range of changes mea-
sures a model’s performance; the greater the
range, the better the model.

A linear analysis provides one framework
that can relate the moment-by-moment

stream of behavior from an organism (depen-
dent measure) to the moment-by-moment
pattern of reinforcers (independent mea-
sure) (McDowell, Bass, & Kessel, 1993). As al-
ready noted, Palya et al. (1996) showed that
such a linear analysis can, over some range,
also satisfy the generalization requirement.
McDowell et al.’s form of linear analysis is an
inherently dynamic description grouped un-
der the general heading of filter analysis. This
‘‘animal as filter’’ concept emphasizes the
measured reinforcer and response times rath-
er than hypothetical internal processes, such
as the notion that the occurrence of a rein-
forcer ‘‘strengthens’’ a response tendency or
strengthens a ‘‘connection’’ between a stim-
ulus and a response. It also differs from po-
sitions that argue that a molar response rate
is a function of a molar reinforcement rate.
However, McDowell, Bass, and Kessel (1983)
showed that linear analysis has the correct
limit in the static regime in which a molar
analysis is widely accepted.

Because one of the more common uses of
linear analysis is in electrical engineering, an
electronic analogy can help to express the
character of this approach. For a simple time-
dependent schedule, an analogy can be
drawn between the pattern of the reinforcers
received by the animal over time and the in-
put wave form to an audio amplifier. The out-
put wave form of the amplifier would then be
analogous to the behavioral response of the
organism. In both cases, the output wave
form is seen as being determined by the in-
put wave form. The analogy extends naturally
beyond the identification of the input and
output to a different means of data descrip-
tion: Both the reinforcement schedule and
supported behavior are describable as a sum-
mation over frequency components (i.e., sine
waves) using the standard methods of Fourier
analysis (Bracewell, 1986; Ramirez, 1985).
Provided linearity is appropriate, these sum-
mations over frequency allow efficient study
and prediction of the underlying behavioral
dynamics. In the electrical case, the depen-
dence of output on input is purely linear; in
the behavioral case, the dependence is not
expected to be purely linear, but may have a
substantial linear component.

Turning from the electrical analogy, we
need to refine the definitions of the elements
and relations used for a linear analysis of be-
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havioral dynamics. The first element, the pat-
tern of reinforcers, is treated by linear behav-
ior analysis as a complicated signal containing
many frequencies: Some reinforcers are close
together, some are far apart. In addition,
each frequency component has its own re-
spective amplitude, in that some frequencies
occur often and some occur rarely. Behavior,
the second element, is viewed similarly: Some
interresponse times are long, some are short,
some are frequent, some are rare. This de-
composition of the complex patterns of re-
inforcers and behavior makes possible more
than just a convenient method to catalog the
properties of the data. To the extent that the
organism satisfies linearity, the change that
occurs at each frequency when going from
input (reinforcers) to output (behavior) is
multiplicative, that is,

output( f ) 5 g( f ) 3 input( f ). (1)

Further, the factor g( f ), called the transfer
function, will be the same for that frequency
component of future reinforcements. A per-
fectly linear organism would be characterized
uniquely by a single linear transfer function
that is independent of differences in proce-
dures, differences in learning histories, and
possibly even differences in concurrently pre-
sented contingencies. Equation 1, combined
with this independence of g( f ), allows gen-
eralizing a specific observation to predict the
behavioral dynamics expected for new sched-
ules.

The benefits of conceptualizing an organ-
ism as a filter are that (a) it makes possible a
prediction of the dynamics of behavior rather
than some molar or static prediction of a be-
havioral average. That is, this approach pre-
dicts the moment-to-moment changes in the
behavior of an individual across some extend-
ed period of time. (b) It is based exclusively
on the relation of inputs and outputs. A lin-
ear analysis is silent on any reductionistic ma-
chinery that may produce the filter charac-
teristic of the organism, including the
strengthening of molecular or molar behav-
ior by the occurrence of a reinforcer. And (c)
the predictions can be made with no free pa-
rameters. The importance of this third as-
pect, with respect to serious theorizing, can-
not be overstated. Free parameters often
serve a useful purpose in the initial stages of
description and analysis, but until they are re-

moved, any model falls short of complete-
ness. Free parameters buy prediction and
thereby credibility on credit, but a model can-
not be constructed solely of debt. The task of
an empirical science is to characterize the fac-
tors that control behavior, rather than to ac-
crete free parameters.

How does the purely linear analysis imple-
mented in this report relate to the broader
questions of behavioral dynamics? Although
a linear analysis is likely to be incomplete or
insufficient for a variety of reasons, it is also
likely to be a necessary first step in a more
general analysis of behavioral dynamics. For
example, although the adaptive acquisition of
behavior is outside the scope of a linear mod-
el, the steady-state behavior may well be an
approximately linear limit of adaptive acqui-
sition. Further, to attack questions like adap-
tive acquisition or isolated schedule transi-
tions with a nonlinear approach, such as the
quadratic and higher order terms of the
Kubo-Bass series, the range and performance
of the linear limit are a necessary starting
point (McDowell, Bass, & Kessel, 1992). Start-
ing with a linear analysis also provides access
to a class of fully developed analytic and nu-
merical techniques with well-understood
properties. Consequently, our experiment fo-
cuses on steady-state behavioral dynamics.

Palya et al. (1996) were the first to dem-
onstrate the use of these standard numerical
methods in a behavioral dynamics context.
The report showed that (a) a linear approx-
imation is sufficient to make reasonable pre-
dictions, without free parameters, for a new
schedule, and (b) the general qualitative
form of pigeons’ transfer functions is that of
a low-pass filter. Palya et al. also suggested a
number of refinements necessary to measure
a steady-state transfer function and define
more demanding tests of a linear approxi-
mation for behavioral dynamics.

Palya et al.’s (1996) determination of a pi-
geon’s transfer function depends on two pre-
mises. First, the experimental procedure used
to measure the transfer function employs an
aspect of Fourier’s theorem. In principle, be-
cause a linear transfer function is the speci-
fication of how a system changes each possi-
ble input frequency, every reinforcement
frequency must be tested. Doing that individ-
ually would be prohibitively time consuming.
Fourier’s theorem shows that a zero-duration
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Fig. 1. A schematic representation of the algorithm used, first, to extract a transfer function and then, second,
to predict behavior to a new schedule. The upper left images illustrate the behavioral output to a pattern of rein-
forcers. The middle left depicts the conversion of those data to frequencies and the division of the output by the
input. The lower left image represents the transfer function. The left side of the right half of the figure illustrates a
schedule and its frequency-domain representation. The lower portion of the right side of the figure illustrates the
reinforcement-rate data being multiplied by the transfer function to produce the frequency representation of the
predicted behavior. This is transformed to the time domain and compared to the actual behavior, as illustrated in
the upper right portion.

pulse can be replicated by an equally weight-
ed sum of all possible frequencies (Bracewell,
1986). In other words, a sum of all possible
input frequencies of reinforcement would be
obtained by implementing a procedure con-
taining a zero-duration pulse of reinforcers.
Lengthening the pulse to a few minutes with
a relatively rich reinforcement schedule
makes practical implementation possible
without an unacceptable loss of frequencies.
Palya et al.’s procedure used repetitive ex-
posures to a 1,000-s trial containing an unsig-
naled step transition from a VI 20-s schedule
to extinction after 200 s (a mixed schedule).
Second, the numerical computation of a
transfer function turns on the assumption of
linearity. For any linear system, the transfer
function can be calculated by dividing each
output frequency component by the input
frequency component. Further, the division
at each frequency is independent of the di-
vision at all other frequencies. The possibility
of divide-by-zero errors, however, does have
an important consequence: Some reinforce-
ment schedules are more useful than others

for estimating a transfer function. We will
consider this point further below. The do-
main change from time-based measures to
frequency-based measures is analogous to
converting an involved arithmetic problem to
logarithms in order to simplify its computa-
tion.

Figure 1 illustrates in schematic form the
two phases of Palya et al.’s (1996) analysis and
the central role played by the transfer func-
tion. On the left, the pigeon’s dynamics are
captured by a transfer function; on the right,
the same transfer function is then used to
predict behavior for a new contingency. Al-
though each of the transformations shown in
Figure 1 is actually done numerically, at an
intuitive level, the figure is a complete depic-
tion of the features present in our linear anal-
ysis of behavioral dynamics. (The analytic ba-
sis of the numerical computations is given by
Palya et al. and is briefly repeated in the Ap-
pendix. Palya et al. also provided examples of
all intermediate results as well as a discussion
of units.) The upper left portion illustrates a
pigeon emitting some pattern of behavior in
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response to some dynamic pattern of rein-
forcers over some time interval. Below that,
in the left central portion, are the frequency
domain equivalents of these two time histo-
ries. Effectively, these frequency domain
equivalents are the spectra of the reinforce-
ment and operant behavior. The conversion
produces both amplitude and phase infor-
mation. Dividing the behavioral spectrum
(output) by the reinforcement spectrum (in-
put) yields the transfer function. Note that a
consequence of transforming to the frequen-
cy domain is that reinforcement, response,
and transfer function are all complex-valued
functions. Although Figure 1 uses the com-
mon and convenient representation of the
real and imaginary parts of these three func-
tions as an amplitude and phase, the actual
computations done in the frequency domain
employ complex arithmetic.

The framework for linear analysis devel-
oped by McDowell et al. (1993) relates indi-
vidual responses to the prior reinforcers. The
present experiment’s data are not, in a strict
sense, used in such a completely local man-
ner within the linear analysis shown in Figure
1. As noted by Palya et al. (1996), some de-
gree of approximation is introduced by the
repeated trials local average. A completely lo-
cal analysis should include explicit bookkeep-
ing that preserves trial order, so each re-
sponse would be attributed only to prior
reinforcement history. A repeated trials local
average, in contrast, combines the data from
multiple trials and excludes the trial ordering
from consideration. The substitution is one
of going from an individual trial’s reinforcers
generating a set of responses to a distribution
of reinforcement sequences generating a dis-
tribution of response sequences. As also not-
ed by Palya et al., the repeated trials local av-
erage can then simplify the behavioral
dynamics to the dependence of the response
sequences’ mean upon the reinforcement se-
quences’ mean. The transfer function that re-
lates the distribution means is not necessarily
the same as the mean of the transfer func-
tions determined from each trial individually.
Presumably, though, for steady-state observa-
tions of behavioral dynamics, it is a reason-
able approximation. This approximation will
limit the precision with which a transfer func-
tion estimate can be used to predict behavior.

The transfer function determined by the

processing on the left side of Figure 1 is a
characterization of how each possible input
frequency is either increased, held constant,
or suppressed by the pigeon. At the outset,
the transfer function is a set of unknown pa-
rameters. Once estimated from data, the
transfer function is fixed. This estimation
process allows a linear analysis to account for
the pigeon-to-pigeon variability. During the
second phase of a linear analysis, one predicts
the absolute response rate without free pa-
rameters. For contrast, if some other type of
analysis yielded a functional dependence
upon time but left the absolute rate unde-
fined, then the normalization constant re-
quired to scale the prediction to the data
would be a free parameter.

The second phase of our analysis tests the
accuracy of a prediction for behavior con-
trolled by a new pattern of reinforcers. Be-
cause the trials are governed by a new rein-
forcement schedule, the pigeon, after some
interval of transient acquisition behavior,
emits some new steady-state distribution of
behavior. The starting point for the second
phase of the analysis is the new distribution
of reinforcers illustrated in the upper right
portion of Figure 1. The experimental data
are used differently in the second phase of
the analysis; only the reinforcer distribution
is converted to the frequency domain. It is
then multiplied by the transfer function that
was determined by the first phase of the anal-
ysis. The product is the frequency domain
representation of the predicted behavior. The
prediction is then converted back to the time
domain. The prediction has exactly the same
form as the measured behavior: the local re-
sponse rates for all time bins of the test sched-
ule. The time domain form of the prediction,
along with the actual behavior supported by
the new reinforcer distribution, can be seen
in the upper right portion of the figure. The
sum of the squared discrepancies between
the measured distribution of behavior and
the prediction at a uniformly spaced set of
times within the trial interval can be assessed
with x . Palya et al.’s (1996) comparison of2

n

the predictions to chance predictions via x2
n

indicated that even the initial implementa-
tion of the analysis resulted in significant (p
, .05) predictions.

In this report we refine the experimental
and data reduction procedures by (a) com-
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paring the relative efficacy of several data-
sampling methods for determining the trans-
fer function; (b) correcting for the
incomplete sampling of the input frequency
spectrum when determining the transfer
function by using a two-pulse procedure; and
(c) avoiding the truncation of the output
wave form by shifting the initial pulse to later
in the interval. The report also sets semi-
quantitative limits on the precision possible
with a linear analysis of behavioral dynamics.

IMPROVED METHODS OF
TRANSFER FUNCTION

ESTIMATION

The overall performance of a linear anal-
ysis of behavioral dynamics depends sensitive-
ly on the precision of the transfer function.
As noted by Palya et al. (1996), this precision
is determined, in part, by the experimental
design. Even if the pigeon’s behavioral dy-
namics were completely linear, some rein-
forcement schedules would yield a better es-
timate of the transfer function than others.
Given that only a preliminary understanding
of behavioral dynamics is available, the pres-
ent experiments employed three refinements
of Palya et al.’s procedure that address known
difficulties. As more becomes known about
the linear component of behavioral dynam-
ics, its characteristics can, in turn, provide the
necessary starting point for existing tech-
niques to improve the estimation of a transfer
function (Ayers & Dainty, 1988; Fienup,
1993). The iterative techniques would com-
bine an observed property, for example, that
the response rates are always greater than or
equal to zero throughout the trial, with the
initial measured transfer function as the basis
of a search algorithm for a refined transfer
function that had both the desired property
and the best agreement with experimental
data. Alternatively, with constraint-based
methods, one can introduce a constraint on
the allowed transfer function, for example,
that it take only forms that can be generated
from a time-domain wavelet. Both iterative or
constraint-based methods provide a natural
framework to include assumed behavioral
properties and determine if their inclusion
yields an improved linear analysis. These clas-
ses of bootstrap processes, however, belong to
our field’s future. For the present, it is pref-

erable to confine modifications to only the
experimental phase durations or the rein-
forcement schedules, because neither change
is likely to introduce implicit assumptions
about the behavior.

The three refinements to the reinforce-
ment schedule introduced in this report fit
into two categories. The first is an application
of the central limit theorem and is indepen-
dent of the other two. Rather than using just
a single sample of the steady-state data, mul-
tiple independent samples are used to com-
pute an average transfer function in an effort
to improve the signal-to-noise ratio. The oth-
er two refinements are improvements in the
form of the reinforcement schedule used to
extract the transfer function. Unlike Palya et
al. (1996), we used two or three VI pulses
during the transfer function measurement
phase, and we delayed the first pulse onset
from the trial’s start for all phases. Both re-
finements were driven by the analytic prop-
erties of linear analysis and the empirical
properties of the schedule behavior. Employ-
ing them alleviates a pair of artifacts that
make predicting behavior on a new schedule
more difficult. Although these two refine-
ments interact to some extent, they can be
considered sequentially.

We increased the number of steady-state
sessions available for the analysis reported
here, particularly for the phase specifically
designed for transfer function measurement.
Assuming the dynamics were unchanged, the
extra data allowed the comparison of three
different methods of transfer function com-
putation. All three methods are similar; they
are more like variations on a theme than
unique estimation algorithms. The three
transfer functions, once extracted, are used
identically, as shown on the right half of Fig-
ure 1, to predict the behavior that should be
supported by a second schedule. The first
method estimates the transfer function based
on a single sample of the steady-state data ex-
actly as shown on the left half of Figure 1.
The second method is based on extending
the number of steady-state sessions. In this
second variation, five independent samples of
the steady-state data are used to compute five
distinct transfer functions. Each of the five
transfer functions is extracted as shown on
the left half of Figure 1. The five transfer
functions are then averaged in the frequency
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domain to yield a mean transfer function es-
timate. The third method is similar to the sec-
ond in that it also combines more than one
transfer function to form an average. The dif-
ference is that we now estimate transfer func-
tions based on data from two different ex-
perimental conditions and then average in
the frequency domain. For this variation to
be successful, the experiment must contain at
least two experimental conditions that are
suitable for transfer function extraction, as
well as a third experimental condition to
serve as a test. As a side benefit, the greater
number of steady-state sessions required by
the second method also provides an oppor-
tunity to estimate the precision of the re-
peated trials local average without requiring
prior assumptions about the forms of the dis-
tributions.

Palya et al. (1996) showed that determin-
ing a transfer function on trials containing a
single reinforcement pulse is problematic be-
cause it results in reinforcement (input) com-
ponents of zero amplitude at behaviorally im-
portant low frequencies. The zero amplitudes
occur at frequencies corresponding to the re-
ciprocals of the pulse duration and at all
higher harmonic frequencies. Because there
was no information for those frequencies, the
predictive accuracy of the procedure was re-
duced. Palya et al. pointed out that if the pro-
cedure filled those zero amplitude frequen-
cies, the resulting transfer function would
make better predictions. This artifact’s link-
age to the reciprocal of the pulse period sug-
gested its solution. Kessel (1998) developed
the mathematical expressions that describe
how the addition of a second pulse can fill
these ‘‘amplitude holes.’’ The core attribute
required of the second pulse is that its dura-
tion differ from the first. Frequencies not
present in one pulse are filled in by the other.
This refinement improves the transfer func-
tion estimation by using reinforcement
schedules with more uniform spectral con-
tent across the low frequencies. The more a
schedule yields flatter spectra, the lower the
likelihood of divide-by-zero artifacts. The in-
terval between the two pulses also affects the
low-frequency component amplitudes, al-
though less dramatically. We would not, how-
ever, claim that the schedules developed for
this report are the best possible schedules for
the measurement of a transfer function. Rath-

er, the set of schedule parameters proved ad-
equate for the problem at hand.

In Palya et al. (1996), there were usually
five 1,000-s trials per daily session with the in-
tertrial boundary marked by a 10-s blackout.
The VI pulse always began at the start of a
trial. Hence, the blackout marked not only
the intertrial boundary but also certain entry
into VI 20 s. Because of this unintended sig-
nal, the rates changed instantaneously from
zero during the blackout to a high rate dur-
ing the VI. This produced an artificially sharp
onset transition in the response wave form.
In the present experiment a second or third
rising edge could be present later in the trial.
This situation would lead to a confounding
effect in measuring the onset dynamics in
which data from a signaled edge (after exit
from the blackout) are mixed with data from
an unsignaled edge (at an arbitrary time in
the trial). There would be difficulties when
trying to predict the effect of purely unsig-
naled onset edges. We removed this problem
by inserting a short extinction period ahead
of the first VI pulse. As a result, response rate
at the beginning of the trial started at a rel-
atively low level and exhibited an orderly in-
crease up to the time the unsignaled VI went
into effect. This initial low rate also prevented
a discrepancy between the rates at the onset
and end of the Fast Fourier Transform (FFT)
sampling window. The results of Palya et al.
were unaffected by this confounding effect
because they studied only variations in the
falling edge timing and the magnitude of a
single pulse.

METHOD
Subjects

Five adult experimentally naive pigeons ob-
tained from a local supplier were used. They
were housed under continuous illumination
in individual cages with free access to water.
All were maintained at approximately 80% of
their free-feeding weights by limited feeding
with pelletized laying mash.

Apparatus
Five experimental chambers were used.

The interior of each was a box (30 cm by 30
cm by 34 cm). An unfinished aluminum pan-
el served as one wall of the chamber; the oth-
er sides were painted white. The aluminum



10 WILLIAM L. PALYA et al.

panel had a feeder aperture 5 cm in diame-
ter, medially located 10 cm above the grid
floor. Three response keys, 2 cm in diameter,
were located 9 cm apart, 29 cm above the
grid floor. Only the center key was used. It
required approximately 0.15 N to operate.
The key was transilluminated green by a stim-
ulus projector containing the Rosco 86 yel-
low-green theatrical gel throughout all phases
of the experiment, with the exception of the
blackouts and reinforcement. Two house-
lights were located on the stimulus panel 32
cm above the grid floor. The lamps were
shielded such that their light was directed to-
wards the ceiling. Ventilation was provided by
an exhaust fan mounted on the outside of the
chamber. A white noise generator provided
ambient masking noise.

Stimulus events were controlled and key
pecks were recorded by a computer system
(Palya & Walter, 1993). The computer ar-
chived the time of each stimulus and re-
sponse event in 1-ms ‘‘ticks.’’ Subsequent
data extraction and analysis routines provid-
ed the derived data. Complete raw data event
logs of all research are maintained for 10
years and are available from the authors.

Procedure

Each pigeon was trained to approach and
eat from the food magazine within 3 s on
three consecutive presentations. They were
then autoshaped to peck an illuminated key
for five to six sessions. Once stable respond-
ing had been established, the experimental
phases began. Throughout the course of the
experiment, each daily session typically con-
tained 45 to 55 food presentations. The pre-
cise number of food presentations, however,
was determined by the pigeon’s body weight
that day and was adjusted to be just sufficient
to maintain the pigeon at its 80% weight. Pi-
geons that required more food to maintain
their weight were postfed no less than 60 min
after their daily sessions. Each phase contin-
ued until two criteria were satisfied in se-
quence. First, the pigeon’s behavior had to
reach a steady state in which response rate
showed no apparent session-to-session trends,
as judged by visually inspecting average re-
sponse rate plotted as a function of sessions.
After this stability criterion had been met, the
phase then continued until the number of
sessions required by the various averaging

techniques had been obtained and the
change could be fitted within the constraints
of other laboratory activities.

Following exposure to initial training con-
ditions, the pigeons were exposed to the four
phases of the experiment. All four used re-
peated exposures to 2,000-s trials separated
by 10-s blackouts. Within each trial, circum-
scribed but unsignaled periods of reinforce-
ment availability (pulses) occurred, during
which a VI 20-s schedule operated. Outside
the VI pulse durations, pecks had no effect
(an extinction schedule). The VI schedules
were composed of exponential distributions
of interreinforcer intervals (IRI) (Fleshler &
Hoffman, 1962). The trial procedures consti-
tuted mixed reinforcement schedules. There
were typically three trials in each daily ses-
sion.

The modulation patterns that define the
unsignaled VI pulses within a trial are shown
schematically for each pigeon and phase
against the 2,000-s trial length in Figure 2.
The modulation patterns do not contain the
local variations in the reinforcement rate that
are present during the VI pulses. The local
variations will have to be incorporated into
the analysis because they give the reinforce-
ment input a significant distribution width.
For descriptive purposes, however, it is con-
venient to regard the simplified patterns in
Figure 2 as the input signals. The onset times
and completion times for the VI pulses shown
in Figure 2 are given in Table 1. As noted
above, Fourier’s theorem requires that the tri-
als contain a range of input frequencies de-
termined by the pulse widths and spacings se-
lected for each phase. Of the experiment’s
four phases, only Phase 3 was expressly in-
tended for the computation of a transfer
function as shown on the left side of Figure
1. We used a two-pulse procedure in the mea-
surement of the transfer function for all pi-
geons except Bird 568. Bird 568 was on a
three-pulse procedure during Phase 3. Phase
3 was in effect for a relatively longer period
to provide enough sessions to make five in-
dependent estimates of the transfer function.
Phases 4 and 5 served primarily as the test
phases shown on the right side of Figure 1.
During Phases 4 and 5, all pigeons were ex-
posed to a procedure containing either three
long pulses closely spaced or three short puls-
es widely spaced (counterbalanced across pi-
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Fig. 2. A schematic of the reinforcement profile for each pigeon and phase of this experiment. These reinforce-
ment profiles result from the combination of VI burst and intervening extinction. All trials have a common duration
of Ttrial 5 2,000 s and a 10-s blackout between trials. The left column shows the profiles used exclusively for the
measurement of the pigeon’s transfer functions. The other three columns show the three-pulse and single-pulse
phases used to test the prediction of a linear analysis. The local variations present in the actual reinforcement rate
have been suppressed for clarity.

Table 1

Start and stop times for pulses during the 2,000-s trials.

Phase Bird Start Stop Start Stop Start Stop

3

4

5

6

555, 558, 589, 593
568
554, 568, 593
558, 589
554, 568, 593
558, 589
All

211.0
174.0
198.2
213.8
213.8
198.2
299.8

411.0
279.0
245.2
323.2
323.2
245.2
503.0

642.0
381.0
448.2
370.1
370.1
448.2

783.0
574.0
503.0
495.2
495.2
503.0

807.0
721.6
557.7
557.7
721.6

854.0
784.2
659.2
659.2
784.2

geons). Inspection of the behavior suggested
that there was no order effect; the behavior
supported by the two- or three-pulse proce-
dure was a property of the width and spacing
of the pulses and not the presentation order.
Although not specifically designed for the
purpose, the phases with three narrow pulses
widely spaced could also be used to extract a
useable transfer function. Phase 6 was a sin-
gle-pulse schedule common to all 5 pigeons
and was used solely as a test phase. The single
pulse of Phase 6 was moved 100 s later into

the trial to address two minor questions. First,
is there a commensurate change in the pi-
geons’ behavior? Second, how well does a lin-
ear analysis handle this form of generaliza-
tion? In both cases, the results were as
expected: Both the behavior and the predic-
tion did follow the reinforcement.

RESULTS AND DISCUSSION

In a broad sense, the behavioral dynamics
supported by multiple unsignaled VI pulses
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intermixed with periods of extinction have
parallels to the behavioral dynamics reported
by Palya et al. (1996). There are, however,
some new features. To highlight the similari-
ties and differences, we will first consider the
results from a phenomenological viewpoint,
and then discuss the performance and limi-
tations of the linear analysis. Similarly, al-
though the data-reduction methods follow
Palya et al. (1996), some technical aspects of
their use are specific to this experiment. This
material can be found in the Appendix.

The steady-state behavior showed orderly
responding with a correlation to the VI pulses
for all pigeons during all four phases (Figure
2). The top panel of Figure 3 shows the in-
dividual response rates in each time bin for
all trials over the final 20 sessions of Phase 4
for Bird 558 as a dot plot (Palya, 1991, 1992).
The bottom panel is the corresponding plot
for Bird 558 during the final 20 sessions of
Phase 5. The repeated trials local average is
indicated with the solid line, and the pulse
intervals are indicated by the dark gray bars.
In much the same way as the rectangular
modulation profiles used in Figure 2, our use
of dark gray bars simplifies the depiction of
reinforcement. A dot plot of the reinforcers
would show a constant rate of zero outside
the VI pulse interval and a rectangular band
centered at the mean VI during the interval.
The light gray bars indicate the duration of
the maximum IRI added to the end of the
scheduled pulse. This ‘‘11 max IRI’’ region
is terminated with a dashed line.

Figure 3 shows data typical of the dynamic
behavior supported by the VI pulse sched-
ules. The response rates increased during the
initial extinction between the intertrial black-
out and the first period containing reinforc-
ers. Response-rate decrements typically oc-
curred at the start of the interpulse
extinction periods, followed by an anticipa-
tory increase in rate up to the next period
containing reinforcers. In general, the drop
in average response rate during an interpulse
extinction increased as the duration of ex-
tinction increased. Response rates within the
long final extinction typically fell to a mini-
mum relatively promptly after the VI pulse
completion and then subsequently increased
as the next blackout neared. Compared to
the steady, featureless cumulative records tra-
ditionally obtained for a continuous VI sched-

ule, a VI pulse results in substantially more
local variation in behavior during the pulse.
For some multipulse phases, the final VI
pulse was also followed by a ‘‘ring’’ or ‘‘echo’’
of temporally localized enhanced responding
within the long final extinction. Although the
broad form of the supported behavior in all
5 pigeons was similar, the responding of each
pigeon was distinctive, in agreement with Pal-
ya et al.’s (1996) results. Bird 568 was sensi-
tive to even the shorter extinctions, whereas
Bird 593’s responding tended to show less
variation even at the wider pulse separations.
Considering the behavior of all 5 pigeons as
a group, it appears that the underlying pro-
cess governing the behavioral dynamics we
observed is the same as seen in the results of
Higa (1996), Higa and Pierson (1998), and
Horner, Staddon, and Lozano (1997). In all
four studies a sharp change in local reinforce-
ment rate produced a change in response
rate with roughly a 30-s rise (or fall) time.
(See the discussion following Equations 4 and
5 in the Appendix for the effect a 30-s tran-
sition time had on the experimental design.)

All 5 pigeons maintained surprisingly high
response rates during the long final extinc-
tion period despite hundreds of sessions of
exposure to the complete lack of reinforcers
in the final approximately 1,200 s of the trial.
Unlike Palya et al.’s (1996) results, even the
single pulse procedure used in Phase 6 of the
present study supported some responding
throughout the final extinction period. The
responding during the long final extinction
was quite variable between individual trials. It
is unclear whether the appearance of this re-
sponding following a single pulse was due to
adding an extinction interval between the tri-
al boundary blackout and the first unsignaled
reinforcement pulse onset, was an order ef-
fect caused by the prior multiple pulse phas-
es, or was the result of some other behavioral
process. As can be seen in Figure 3, the lowest
rate occurred shortly after the last VI pulse
(or the ring) of the trial, rather than at the
end of the long extinction period. This find-
ing was inconsistent with behavioral momen-
tum or reflex-reserve-like notions, which
would suggest that the strengthening effect of
the reinforcement periods dissipates with in-
creasing exposure to extinction. Neither was
it consistent with stimulus control notions,
suggesting that it should be increasingly ap-
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Fig. 3. Dot plots showing the responding of Bird 558 under the narrowly spaced and widely spaced procedures
of Phases 4 and 5. The measured response rate for each of the 256 time bins for each trial during each of the last
20 sessions is plotted as a dot. The mean response rate within each bin is the repeated trials local average and is
depicted with a solid line. The VI pulses containing food availability are designated with dark gray bars. Light gray
bars show the length of the maximum IRI and are appended to the reinforcer availability period. The ‘‘11 max IRI’’
region is terminated with a dashed line.



14 WILLIAM L. PALYA et al.

parent that no further reinforcers would be
forthcoming as the final extinction period
elapsed. A 1,200-s period of extinction is un-
like a VI 20-s schedule. The observed behav-
ior is consistent with Palya’s (1993) bipolar
model of behavior across temporal intervals.
His model predicts high rates at the point just
before the reinforcer and predicts the lowest
rates at the point most removed from the up-
coming reinforcer. In the present procedure,
the termination of the last reinforcer pulse
would be predicted to control the lowest rate
in the trial.

A notable effect generated by some, but
not all, procedures is illustrated in the bot-
tom frame of Figure 3. When the VI pulses
were widely spaced, a localized increase in re-
sponding (a ring) occurred approximately
200 s after the final pulse. The ring’s rising
edge appears in form to be anticipatory re-
sponding before a nonexistent fourth pulse.
By contrast, the top frame of Figure 3 illus-
trates the lack of a ring typical for procedures
with narrow gaps between the VI periods.
Providing a satisfactory description of the
ring may well represent a challenge beyond
the capabilities of a linear analysis and prob-
ably for many other approaches as well. We
will consider this effect and its implications
further once the quantitative performance of
the linear analysis predictions is available for
context.

Each of the 256 time bins in Figure 3 con-
tains a distribution of response rates across
trials. The form of the distribution varied as
a function of time throughout the trial. The
distribution of response rates is broad and
centrally peaked about the repeated trials lo-
cal average during the VI pulses. During the
extinctions, the response-rate distribution is
single sided with a skew towards zero. In nei-
ther case are the response-rate distributions
particularly well approximated by a Gaussian
distribution. Given the form of the distribu-
tion, how precise are the repeated trials local
averages, and how quickly does adding addi-
tional trials improve its precision? The five in-
dependent samples of behavior measured in
Phase 3 can provide an answer. For each of
the 256 bins, we determined the range be-
tween the minimum and maximum of Bird
558’s five repeated trials local average rates.
This minimum-to-maximum range of the five
rates is narrower than that of the overall dis-

tribution width seen in Figure 3. One can
then compare one half of this directly mea-
sured minimum-to-maximum range with that
expected from the standard error of the
mean, SEM 5 SD/ÏN , where SD is the stan-
dard deviation for Bird 558’s overall distri-
bution. When averaged over all the 256 bins,
the SEM is a reasonable approximation to the
directly measured range, assuming that N is
the number of sessions (N 5 20) and not the
number of trials. Extending this approxima-
tion, one can use the individual-bin SEM val-
ues squared for the s term in Equation 82

B(t )i
(see the Appendix). Although the SEM slight-
ly underestimates the average width, it is a
convenient approximation because it is de-
termined by the data from a single sample.
More locally within the trial interval, the mea-
sured range has a noticeably different time
dependence. The extinction and the back
edges of the response pulses show greater var-
iability than expected from the SEM.

Although the linear analysis to follow is fo-
cused on the averages of the distributions
(i.e., the solid line in Figure 3) and, to a less-
er extent, their widths as measured via the
variances, there is more to the data. As noted,
the repeated trials local average and standard
deviation do not fully capture the variations
in the form of the distributions as a function
of time throughout the trial. These variations
in the steady-state form of the distribution
can be more naturally shown with a color
three-dimensional projection plot,1 a series of
profile plots (a waterfall plot), or a color
spectrogram plot rather than Figure 3, which
highlights the average character. A second
important characteristic of behavioral dynam-
ics that is eliminated in constructing a re-
peated trials local average is the trial-to-trial
sequential structure. This molecular structure
in behavior is best shown by plotting all trials
individually and playing them as a movie.2

Figures 4 through 8 show the linear analy-
sis of the results as well as the response and
reinforcement rates. Each figure shows mea-
sured and predicted response rates across the

1 A sample three-dimensional color projection plot is
available at http://www.jsu.edu/depart/psychology/sebac/
linear-modeling/. The equivalents to Figure 3 for all pi-
geons and all phases are also available at this URL.

2 A set of QuickTime movies for all pigeons and all phases
are available at http://www.jsu.edu/depart/psychology/
sebac/linear-modeling/.
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Fig. 4. The obtained and predicted responding across a trial for Bird 554 for each phase of the experiment. The
upper frame in each pair depicts the obtained response rates with a solid line and the prediction made by a linear
analysis with a dotted line. The SEM of every 8th time bin’s measured response rate is shown by the superposed error
brackets for Phases 4, 5, and 6. The remaining error brackets, not shown for clarity, were the same local magnitude
as those shown. The lower frame in each pair of frames indicates the obtained reinforcement rate in each time bin
of the interval. The minimum to maximum range of the repeat trials local average reinforcement rate from the five
samples of Phase 3 is superposed as an error bracket on every 8th time bin. The predictions all used the single-
sample transfer function b554ptpfunpp3pv1.dat.
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Fig. 5. The obtained and predicted responding across a trial for Bird 558 for each phase of the experiment. The
predictions all used the single-sample transfer function b558ptpfunpp3pv1.dat. Details as in Figure 4.

four phases. Paired with these response-rate
plots are panels showing the measured rein-
forcement rates. The measured rates are re-
peated trials local averages computed from all
trials during the final 20 sessions of each
phase. Excluding a special-case self-predic-
tion for Bird 558 used to establish the prop-
agated uncertainty due to the variance of the

reinforcement-rate distribution, Phase 3
served as the basis for transfer function esti-
mation and no predictions are shown. Once
the transfer function had been obtained from
Phase 3, predictions for average behavior dur-
ing Phases 4, 5, and 6 could be made, as
shown in Figure 1. The linear analysis predic-
tions are shown for Phases 4, 5, and 6 with
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Fig. 6. The obtained and predicted responding across a trial for Bird 568 for each phase of the experiment. The
predictions all used the single-sample transfer function b568ptpfunpp3pv1.dat. Details as in Figure 4.

dotted lines. Note that the transfer functions
used for the predictions are denoted by their
data file names (e.g., b554ptpfunpp3pv1.dat
contains Bird 554’s transfer function as esti-
mated from Phase 3, Single Sample 1). Each
of the three predictions in Figures 4 through
9 is made from a single sample of the pi-
geon’s behavioral dynamics measured over

the last 20 sessions of Phase 3. Bird 554 had
both the lowest characteristic response rate
and the softest ring of the 5 pigeons. The lin-
ear analysis, of course, is unchanged by the
presence of the subject-to-subject variations
in responding, such as those apparent in Fig-
ures 4 through 8. It merely asserts that each
pigeon’s behavioral dynamics measured in
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Fig. 7. The obtained and predicted responding across a trial for Bird 589 for each phase of the experiment. The
predictions all used the single-sample transfer function b589ptpfunpp3pv1.dat. Details as in Figure 4.

Phase 3 can be extrapolated to Phases 4, 5,
and 6 by the predefined algorithm.

Figures 4 through 8 also show uncertainty
brackets in four of the eight panels. The ver-
tical bars show the SEM of the measured re-
sponse rates for every eighth of the 256 time
bins in Phases 4, 5, and 6. In general, the
SEMs for the long final extinction are com-

paratively smaller than those during the puls-
es. The corresponding smaller variances will
increase the effect on the x test of response-2

n

rate discrepancies during the long extinction
interval. The vertical bars on the Phase 3
measured reinforcement rates are taken di-
rectly from the observed distribution width of
the five repeated trials local averages, rather
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Fig. 8. The obtained and predicted responding across a trial for Bird 593 for each phase of the experiment. The
predictions all used the single-sample transfer function b593ptpfunpp3pv1.dat. Details as in Figure 4.

than an SEM estimate. These reinforcement
rate uncertainty brackets are used to estimate
the s term in Equation 8 (see the Ap-2 predB (t )i
pendix).

Of the three predictions for the respond-
ing of Bird 554 in Figure 4, Phase 5 is the
best, with Phases 4 and 6 lower in fidelity. All
three predictions are faithful to the basic

form and magnitude of the response rates.
Based on the single Phase 3 sample of Bird
554’s behavioral dynamics, the linear analysis
correctly predicts lower and relatively less dif-
ferentiated rates in Phase 4 compared to
Phases 5 and 6. None is perfect, particularly
in the fine structure. A rapid, approximately
32-mHz, quasiperiodic oscillation appears in
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the predicted response rate that is not seen
in the measured rates. Those fluctuations
that do exist in the measured response rates
are more localized, spiky, and noise-like in
character. Many of the same observations
about the quality of the predictions for Bird
554 also apply to the other 4 pigeons. Clearly,
a linear analysis that estimates the transfer
function by the simple division shown in Fig-
ure 1 is incomplete. For about half the pre-
dictions, sharp resonances in the transfer
functions result in noticeable quasiperiodic
oscillation. There was also a modest tendency
for the predicted response rates to fall below
the observed rates in all 5 pigeons. Still, using
a schedule such as that in Phase 3, that is
specifically tuned for extracting a transfer
function has improved the predictions. Com-
pared to the predictions of Palya et al.
(1996), these predictions have fewer excur-
sions into behaviorally impossible negative re-
sponse rates. Comparing the measured and
predicted plots provides a useful qualitative
sense of the predictions; to develop a quan-
titative assessment of these predictions or to
quantitatively compare two predictions re-
quires a x test.2

n

As discussed in the Appendix, using x en-2
n

tails a dependence on the variance of the re-
siduals between the measured and predicted
response rates. There are two aspects of this
dependence of particular importance for this
report. First, a large discrepancy between ob-
tained and predicted values in a bin with sub-
stantial variability does not contribute to x2

n

as heavily as a large discrepancy in a bin with
little variability. Consequently, prediction dis-
crepancies during the final long extinction
typically have a proportionately larger impact
on x because of the lower variance that usu-2

n

ally occurred during this extinction. As a
counterexample, the relatively larger variance
brackets for Bird 554 during the long final
extinction of Phase 4 make a low x value2

n

easier to obtain relative to Phases 5 and 6.
Second, the variance may be estimated in a
variety of ways, particularly because the dis-
tributions depart significantly from Gaussian.
We employed two variance estimates in this
report.

Palya et al. (1996) used the obtained vari-
ance of the response-rate distribution. With
reuse of this estimate, we obtain x values2

n

with identical significance for both studies, al-

lowing a relative x comparison. As an alter-2
n

native, we also used a tighter variance esti-
mated from the five Phase 3 repeated trials
local average reinforcement and response
rates. As has already been noted, the range
in the Phase 3 repeated trials local average
response rates can be approximated by the
overall distribution’s SEM. The SEM, by itself,
ignores the contribution to the variances of
the residuals from the width of the averaged
reinforcement distribution (second term in
Equation 8). To estimate the effect of the re-
inforcement distribution width, we computed
a pair of predictions for Bird 558’s Phase 3
response rates: one from the minimum and
one from the maximum reinforcement rate
in each time bin. The spread between the
minimum and maximum prediction values is
the effect of the reinforcement distribution
width propagated through the linear analysis.
One half the propagated width, assuming a
rectangular distribution, provides an estimate
of the prediction width . CombiningpredsB (t )i
this prediction precision with the response-
rate precision estimated from the repeated
trials local average range (the SEM) yields an
estimate for the total variance via Equation 8.
When compared to the standard deviation of
the overall response-rate distribution (Phase
3 equivalent of an individual panel in Figure
3), total precision for the residuals is smaller
by roughly a factor of Ï2. Consequently, we
can now use SD2/2 as a second tighter vari-
ance for weighting the residuals in x . This2

n

second variance estimate still suppresses any
variance attributable to the transfer function
estimation. Had some other variance estimate
been used, the absolute values of the x2

n

would be shifted, although the relative ratios
between all values would remain unchanged.

Table 2 gives the x values for predictions2
n

based on three different estimates of the lin-
ear transfer function: a single sample from
Phase 3, a five-sample average from Phase 3,
and a two-sample average combining Phase 3
with Phases 4 or 5. Also given are values of
the probability q that are associated with the
x values, assuming the two variance weight-2

n

ings. The qSD values are computed with the
same variance as in Palya et al. (1996). The

values use the tighter variance SD2/2qSDÏ2
weighting discussed above. For either vari-
ance weighting, q is the conditional probabil-
ity that a discrepancy between the measured
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Table 2

Prediction x values and probabilities for exceeding chance.2
n

Bird

554 558 568 589 593

x for predicted based on [KESSEL.VIpEXTINC]b5**ptpfunpp3pv1.dat2
n

(last sample of Phase 3 only)
Phase 4
qSD
qSD/Ï2
Phase 5
qSD

0.334848
1.000
0.999988
0.339258
1.000

0.312560
1.000
1.000

0.787471
0.9949

0.392401
1.000
0.995
6.977813
0.000

0.648345
0.9999972
0.00094
0.306912
1.000

0.627654
0.9999994
0.0034
0.632041
0.9999992

qSD/Ï2
Phase 6
qSD
qSD/Ï2

0.999979
0.651850
0.9999964
0.00078

0.000
0.401629
1.000
0.991

0.000
0.717874
0.99979

5.8 3 1026

1.000
0.393893
1.000
0.995

0.0027
2.273314

2.0 3 10227

0.000
x for predict based on [KESSEL.VIpEXTINC]6b**ptpfunpp3ave.dat2

n

(five Phase 3 samples averaged in frequency)
Phase 4
qSD
qSD/Ï2
Phase 5
qSD

0.270221
1.000
1.000
0.241188
1.000

0.429029
1.000
0.95
0.766648
0.998

0.359487
1.000
0.9998
5.023332
0.000

0.669350
0.99998
0.00024
0.298419
1.000

0.662373
0.999992
0.00038
0.595673
0.9999999

qSD/Ï2
Phase 6
qSD
qSD/Ï2

1.000
0.630413
0.9999993
0.0029

6.0 3 1028

0.413695
1.000
0.98

0.000
0.559845
1.000
0.091

1.000
0.418702
1.000
0.97

0.019
1.884797

4.4 3 10216

0.000
x for predict based on [KESSEL.VIpEXTINC]b5**ptpfunpp3*ave.dat2

n

(average of last sample of Phase 3 and Phase 4/5)
Phase 6
qSD
qSD/Ï2

1.793702
9.9 3 10214

0.000

1.665171
1.2 3 10210

0.000

1.772257
3.4 3 10213

0.000

1.952545
6.4 3 10216

0.000

6.602450
0.000
0.000

Note. All predictions are parameter free and have 256 degrees of freedom. Entries of 1.000 or 0.000 denote cases
in which differences between limits of the probability range and the actual probability are smaller than can be
represented in single precision computer variables. The qSD were computed directly from the listed x using Equation2

n

9. the were also computed using Equation 9, but after first doubling the listed x .2qSD/Ï2 n

and predicted response rates that small ex-
ceeds a chance agreement. Note that p 5 1
2 q if significance levels are preferred. As de-
fined by Equation 7 in the Appendix, the x2

n

values in Table 2 compare the square of the
discrepancy between the predicted value and
the obtained behavior in each bin in terms
of the bin’s variance. The smaller the x val-2

n

ue, the greater the fidelity of the predicted
rate to the obtained rates. Comparison of the
single-sample transfer function predictions in
the top section of Table 2 to Palya et al.’s
(1996) Table 1 shows a marked improvement.
As could be expected from the qualitative im-
provements discussed above, using the Phase
3 schedule for extracting transfer functions
has improved the linear predictions from a
quantitative standpoint as well.

Our predictions were for a 256-element or-
dered time series of response rates with no
free parameters. For comparison, a typical

single-key Herrnstein hyperbola experiment
involves fitting six response rates with two
free parameters. For N 5 256, even modest
excursions of the nonexistent echo predicted
for Bird 568 in Phase 5 and 593 in Phase 6
fail the significance test. As N increases, the
x significance test becomes sharper. The2

n

middle ground becomes narrower; either a
prediction is well above chance or it fails. At
such a large N, q has a plateau structure in
which once the agreement between the pre-
diction and the observation closes to within
a threshold value, then the probability of the
prediction exceeding chance draws very near
1.0. Although room for a better prediction
still exists at lower x values, once the plateau2

n

is reached little increase in q can occur. Con-
versely, at such large N, larger residuals will
rapidly drive q close to 0.0.

Are better predictions with lower x values2
n

possible for the data of this report? Almost
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Fig. 9. Phase 6 responding of Bird 589 as measured (solid line) and predicted (dotted and dashed lines as labeled)
using three different types of linear transfer function estimate. The single-sample Phase 3 transfer function is
b589ptpfunpp3pv1.dat. The five-sample Phase 3 averaged transfer function is b589ptpfunpp3ave.dat. Finally,
b589ptpfunpp35ave.dat is an average of two single-sample transfer function estimates, one based on Phase 3 and the
second based on Phase 5. The SEM of the measured response rate of every 10th time bin is shown by the superposed
error brackets. The remaining error brackets, not shown for clarity, were the same local magnitude as those shown.

certainly, although some of the predictions
are already good. When some other analysis
succeeds in making better predictions, then
the quantitative question of how much better
will be answered by comparing the x values2

n

computed with a common variance estima-
tion. It is important to recognize that our
present form of linear analysis yields a partial,
but significant, prediction, as opposed to a
perfect prediction.

As we have demonstrated, a linear analysis
based on a single sample of Phase 3 behavioral
dynamics yields predictions that are in signif-
icant agreement with the measured behavior.
How well does a linear analysis work if it is
based on averaging the transfer function esti-
mates from more than one sample of behav-
ioral dynamics? Figure 9 shows the measured
behavior for Bird 589 during Phase 6, as well
as predictions made with single and multiple
averaged transfer function estimates. Similar
to Figures 4 through 8, the SEM brackets of
the measured rates are shown on only every
10th time bin for clarity. Use of an averaged

transfer function based on five independent
samples of Phase 3 behavioral dynamics
(b589ptpfunpp3ave.dat) improved the predic-
tions modestly in terms of qualitative character
and from the standpoint of x entries in Table2

n

2. These transfer function estimates have also
improved in comparison to both the single-
sample estimates and our prior work. Figure
10 shows the five-sample-average transfer func-
tion for Bird 589. The top panel gives the am-
plitude relation between the response rate and
the reinforcement rate as a function of fre-
quency. The peak at zero frequency corre-
sponds to the expected rate had the pigeon
been on a constant VI 20-s schedule instead of
the pulse procedure. The shoulders that slope
away from that peak show the decreasing ef-
fect (or roll off) of faster rates of change in
local reinforcement rate on response rate. The
decreases away from the zero-frequency peak
are markedly smoother for the five-sample-av-
erage transfer function. The phase relation
shown in the lower panel shows how local
changes in the reinforcement rate are either
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Fig. 10. The magnitude (upper panel) and phase (lower panel) for the five-sample transfer function for Bird
589. The linear transfer function estimate (b589ptpfunpp3ave.dat) is based on five samples of Phase 3 steady-state
behavior and the associated reinforcement rates.

anticipated or lagged by the response rate.
The five-sample-average transfer function also
has a smoother phase relation. The three pairs
of narrow spikes in the amplitude plot (upper
panel) are likely vestiges of division-by-zero
amplitude artifacts and are noticeably smaller
than would be seen in the single-sample trans-
fer functions. Consequently, the five-sample
prediction suppressed the rapid quasiperiodic
oscillations when compared to the single-sam-
ple prediction in Figure 9 (b589ptpfunpp3p
v1.dat). The suppression of these oscillations
for Bird 589 in Phase 6 with a five-sample pre-
diction was also obtained for the other pi-
geons. A comparison of the top and middle
portions of Table 2 indicates that the smooth-
er predictions made by averaging five Phase 3
transfer functions typically, but not invariably,
decreased x . The magnitude of the improve-2

n

ment was small, and in 5 of 15 cases the x2
n

values of the predictions were worse when us-
ing five-sample averaged transfer functions.
The second approach, which predicts Phase 6
response rates3 based on an averaged transfer

3 Note that although the Phase 3 reinforcement sched-

function that combines a single-sample Phase
3 estimate with a single-sample estimate from
either Phase 4 or 5, fails from a qualitative
standpoint (b589ptpfunpp35ave.dat in Figure
9) or by using x (bottom section of Table 2).2

n

Compared to the other two predictions, in-
cluding a transfer function estimated from the
behavioral dynamics supported by three nar-
row pulses widely spaced further exacerbates
the erroneous prediction of a ring following
the single pulse in Phase 6.

The erroneous prediction of a ring in the
response rate in Phase 6, and the increase in
that error when the three-pulse widely spaced
dynamics were included in the predictor, is
suggestive of the factors controlling that ring.
This potential explanation follows from the

ule was specifically designed to extract transfer functions,
Phases 4, 5, and 6 were primarily intended as test phases.
The phase with three narrow pulses widely spaced is the
only one of the three that could be used to extract a
transfer function. The other two phases had reinforce-
ment spectrum channels with near-zero amplitudes. As a
consequence, we could apply the approach of averaging
transfer functions determined during two different phas-
es only to the prediction of Phase 6.
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contingency differences between the three
procedures involved. As can be seen in the
lower frame of Figure 3, in the widely spaced
multipulse procedure, the pulses were sepa-
rated by substantially more than the maxi-
mum IRI of the VI schedule. This would re-
sult in the regular reinforcement of key
pecking following the elapse of a fixed period
of extinction. If this were the case, then the
ring was a spurious repetition of that re-
sponse pattern following the third pulse. This
interpretation is consistent with the proce-
dure and results illustrated in the upper
frame of Figure 3. In that case, the closely
spaced pulse procedure had pulses that were
separated by less than the longest scheduled
IRI in the VI schedules. It could be argued
that this was effectively a single pulse and did
not support fixed-interval (FI)-like behavior
in the interpulse intervals. This, in turn,
would result in no ring following the narrow
spacing procedure. Following either the last
reinforcer in the narrow spaced procedure or
the nonreinforced FI-like scallop after the
third pulse (the ring) in the widely spaced
procedure, another rate drop followed by a
rate increase up to the first pulse of reinforc-
ers in the next trial might be expected. By
this logic, a linear analysis that averages trans-
fer functions from a widely spaced three-
pulse procedure and a two-pulse procedure
to get a transfer function would be expected
to have a substantial departure from the ac-
tual behavior supported by a single-pulse pro-
cedure.

We also could have used the second-order
Kubo-Bass term (McDowell et al., 1993) to ex-
press the discrepancy between the obtained
and predicted behavior, instead of contingen-
cy changes. The second-order term describes
behavior supported by correlation interac-
tions between reinforcement at two different
times. Such correlations exist for time lags of
approximately the interpulse interval, corre-
sponding to relatively low frequencies, for ei-
ther two- or three-pulse procedures. It is plau-
sible that the ring is a result of
correlation-driven behavior, provided the ap-
propriate interpulse timing occurs. By con-
trast, a single pulse is isolated and would not
be expected to support a well-defined ring via
this mechanism. Although the contingency
change and the second-order Kubo-Bass term
descriptions use different language, the two

descriptions are basically equivalent. The be-
havior-analytic approach posits a contingency
change that exceeds the generalization ca-
pabilities of a linear model. The second-order
Kubo-Bass description explicitly requires a
nonlinear dependence of current behavior
on past reinforcement history. Both are ap-
peals for the inclusion of some nonlinearity
in describing behavioral dynamics. It is worth-
while to note that in physical systems the ap-
pearance of such correlation-generated ech-
oes is a standard hallmark of a nonlinear
excitation.

CONCLUSIONS

Our approach was to extract and account
for sources of variance in a linear analysis of
average steady-state behavioral dynamics.
Simple linear models can account for a sub-
stantial portion of an organism’s dynamics
without explicit reference to the effects of
contingencies of reinforcement or feedback
functions. Absent a preferred model, the lin-
ear analysis prediction algorithm described
here may be the standard by which competi-
tor models of behavioral dynamics, when de-
veloped, can be judged. In the short term,
there are a number of ways in which other
models could outperform the approach of
Figure 1. As examples, one could (a) dem-
onstrate predictions better than ours with a
reduction in the residual discrepancy (mea-
sured by a neutral statistic such as x ), (b)2

n

accurately describe the complete distribution
of behavior illustrated in Figure 3, or (c) op-
erate successfully at higher precision or over
a wider generalization range. In the long
term, whatever description finally holds for
steady-state behavioral dynamics should serve
as the limit case for models of the acquisition
of behavior.

Beyond establishing standards by which
models of steady-state behavioral dynamics
can be judged, this report also has raised a
number of open questions. From an empiri-
cal viewpoint, is the breadth of the distribu-
tions seen in Figure 3 an inherent feature of
repeated trials dynamics in steady state, or
can the variance be decreased to allow higher
precision model tests? In a related question
that mixes empirical and theoretical con-
cerns, do schedules or procedures exist that
are more completely described by a linear
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analysis? One can also open the range of gen-
eralization during the test phase by varying
the VI during the pulse or changing the trial
length. Taking a different tack, one could ex-
plore the factors that control the ringing, as
shown in Figure 3, by varying the number,
durations, and separations of the pulses.
From a theoretical perspective, the predic-
tion algorithm in Figure 1 is still the simplest
method to extract and use a linear transfer
function. How much improvement can be
made in the fidelity of the predictions to mea-
sured behavior with the iterative or con-
strained transfer function estimation tech-
niques? Can the generalization range be
expanded to predict steady-state FI schedule
behavior based on the behavioral dynamics
measured with multiple VI pulses? Finally,
can one broaden the analysis of steady-state
repeated trials behavioral dynamics with the
explicit inclusion of nonlinear terms? The
questions would then become: What types of
adaptive second-order correlative filters will
have linear-like steady-state dynamics in re-
peated trials, how can one experimentally de-
termine the properties of such filters, and
what is the generalization test for filters of
this class?
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APPENDIX
Both the data reduction and the linear dy-

namics prediction reuse computational meth-
ods introduced by Palya et al. (1996). Because
this earlier discussion is available, we will re-
view these methods and restate the underly-
ing analytic definitions, but will forgo a com-
plete step-by-step development.4

Given that dynamic behavior is currently
understood at only a rudimentary level, we
will focus on the central tendency of the data
and to a lesser extent on its variance. One
method to extract these properties from
steady-state dynamics is to use the repeated
trials local average. There are numerous ways
that behavior could change as a function of
time, and the use of averaging, by definition,
sweeps some of these possibilities from view.
Within behavior analysis the most familiar ex-
ample of the repeated trials local average is

4 A complete tutorial using an RC low-pass filter test case
is available at http://www.jsu.edu/depart/psychology/
sebac/low-pass/.
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probably the computation of the FI scallop.
The FI between reinforcer availabilities is sub-
divided into a set of equal-duration time bins.
The number of responses in each bin is then
averaged across successive FI periods to yield
the scallop. In the present case, the 2,000-s
trials are split into 256 bins. The number of
responses in each bin is then summed across
the corresponding bins from all trials across
20 sessions in a given phase. Finally, the
summed number of responses in each bin is
converted to a repeated trials local average
response rate by dividing by both the number
of trials and the constant bin period. An iden-
tical computation run on the reinforcer de-
livery times resulted in a repeated trials local
average reinforcement rate.

The algorithm outlined in Figure 1 is use-
ful because the dynamic relation between
supported behavior and the reinforcement
schedule is substantially simplified by trans-
forming into the frequency domain. Our
analysis uses Fourier transforms for the re-
quired conversions between the time and fre-
quency domains. The forward Fourier trans-
form,

`

2pifth( f ) 5 H(t)e dt, (2)E
2`

converts the function of time H(t) to the cor-
responding function of frequency h( f ). Con-
versely, a function of time can be recovered
from a function of frequency with the back
or inverse Fourier transform:

`

22piftH(t) 5 h( f )e df. (3)E
2`

Although Equations 2 and 3 define Fourier
transforms for continuous functions, the data
were discretely sampled in 256 equally spaced
bins. Conveniently, there is a discrete form of
the Fourier transform called the Fast Fourier
Transform (FFT) that is particularly well suit-
ed to computer evaluation. Our data-reduc-
tion software relies on the FFT implementa-
tion of Press, Flannery, Teukolsky, and
Vetterling (1996), which is based on the def-
initions in Equations 2 and 3. As already not-
ed, because an FFT yields both amplitude
and phase information in the frequency do-
main, the computations for both transfer

functions and predictions use complex arith-
metic.

The use of the discretely sampled FFT and
the form of the data combine to determine
the frequency scale. The lowest nonzero fre-
quency component is

1
f 5 , (4)1 Ttrial

where Ttrial 5 2,000 s for the present exper-
iment. The FFT frequency scale is limited by
the highest frequency component at the Ny-
quist critical frequency, or cut-off. The Ny-
quist frequency is given by

1
f 5 , (5)c 2D

where D is the time between successive sam-
ples. In the present experiment D 5 2,000/
256 5 7.81250 s. One of the principal results
from Palya et al. (1996) is that the transfer
functions of pigeons are some type of low-
pass filter that begins blocking frequencies
above roughly 30 mHz (1 mHz is a frequency
with a 1,000-s period). This characteristic 30-
mHz frequency appears as a bend in transfer
function magnitude when plotted in logarith-
mic coordinates and is normally termed the
filter’s ‘‘knee frequency.’’ Consequently, we
selected the frequency scale for the present
experiments to bracket the knee frequency
and improve the resolution below it. The
2,000-s trial length sets f 1 at 0.5 mHz, dou-
bling the number of low-frequency compo-
nents over 1,000-s trials used by Palya et al.
The use of 256 samples over the 2,000-s trial
results in a Nyquist cut-off at 64.0 mHz.

Once the transfer function has been deter-
mined and a prediction made for a new
schedule of reinforcement, we have predicted
and measured response rates for each of the
256 time bins. The quantitative question is:
How close to the measured response rates are
the predictions? ‘‘Close to the mark’’ has a
somewhat more involved meaning when com-
paring a pair of curves than when scoring ar-
chery or darts. The reduced chi-squared sum
of squared discrepancies is the standard
method to answer this question (Bevington,
1969). Following Bevington, as well as Palya
et al. (1996), x for the discrepancy between2

n

measured response rates B(t) and the pre-
dicted response rates Bpred(t) is
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N1 12 pred 2x 5 [B(t ) 2 B (t )] , (6)O i in 2N 2 n si51 Bi

N1 1 pred 25 [B(t ) 2 B (t )] , (7)O i i2N si51 Bi

where n, the degrees of freedom, is the dif-
ference between the number of data points
N and the number of adjustable parameters
n, and s is the variance associated with the2

Bi
ith response-rate residual B(ti) 2 Bpred(ti).
Because the predictions have no free param-
eters, n 5 0, and the normalization factor
simplifies, as shown, to 1/N and n 5 N. Note
that in the more general case where n , N
and Equation 6 applies, a prediction’s x is2

n

penalized for free parameters through an in-
crease in the normalization factor. In most
circumstances, a prediction will not have an
inherent width, and s reduces to just the2

Bi
variance in the i th measured response rate
B(ti). When Bpred(ti) is spread over some
range with a variance s , then s is the2 2predB Bi
sum of the two contributions

2 2 2 preds 5 s 1 s . (8)B B(t ) B (t )i i i

(To express Equation 8 in terms of standard
deviations, the two contributions are added
in quadrature.) Variance estimates appropri-
ate for the current experiment are discussed
in the Results section.

In our present application, Equation 7
measures how close the prediction comes to
the correct order and value of the 256 mea-
sured rates. In general, the use of x takes2

n

two forms: relative and absolute. Both forms
will have a role in the analysis of this experi-
ment’s data. A relative x comparison iden-2

n

tifies the better of two (or more) predictions
by the lower x value. Provided that the same2

n

method is used to compute the s values, the2
Bi

relation between x values is insensitive to the2
n

absolute magnitude of the s values. In con-2
Bi

trast, absolute x assesses a prediction’s qual-2
n

ity without reference to other models. In-
stead, one compares the residuals against a
chance or random prediction scaled by the
uncertainty weighting given by the s values.2

Bi
The probability q that agreement between the
data and prediction did not occur by chance
is given by

2n nxnq 5 Q , , (9)1 22 2
where Q is the incomplete gamma function

`

2t a21e t dtE
x

Q(a, x) 5 (a . 0) (10)
`

2t a21e t dtE
0

(Bevington, 1969; Press et al., 1996). Strictly,
a q close to 1.0 does not give the probability
that a prediction is correct, but instead, the
conditional probability for the agreement be-
tween observation and prediction once one
assumes that the model is correct. (Of course,
should some new model consistently provide
better agreement of observation using rela-
tive x , the typical course is to abandon the2

n

presumption of correctness for the older
model.) The use of Equation 9 can place un-
realistic demands on the form and the reli-
ability of the s values. The distribution of2

Bi
the residuals is implicitly assumed to be well
approximated by a normal distribution. Fur-
ther, uncertainty estimates for the residual be-
tween an experimentally measured quantity
and its predicted value are often a matter of
art. Consequently, although Equation 9 does
formally answer for the goodness of fit of a
prediction, rigorous mathematical certainty
may exist only in situations in which the phe-
nomenon under study is thoroughly under-
stood.

As an aside, note that the chi-squared mea-
sure of discrepancy is also the basis for the
familiar least squares line fit. The contrast be-
tween the general case, such as obtains in this
report, and the linear special case is impor-
tant. Because of the high symmetry of a
straight line, simple explicit expressions exist
for the best slope and intercept in a least
squares sense. Further, the high symmetry of
the line also gives rise to the correlation co-
efficient, r 2, which has the special property of
comparing a prediction to an ideal result
without explicit reference to the variance in
the data. Depending on the analytic charac-
teristics of the curve involved, similar closed-
form least squares calculations are sometimes
possible, although they quickly become com-
plex and specialized. Consequently, in a more
general case one normally tests the signifi-
cance of a prediction using x and Equation2

n

9 directly.


